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NERSC Facility Leads DOE in Scientific 
Computing Productivity  

NERSC computing for science 
•  4000 users, 500 projects 
•  1500 publications per year 
• Outstanding user services, computing 

and data systems 

Systems designed for science 
•  1.29 Petaflop Hopper system 
• Best application performance per $ 

and per Watt 
• Designed for reliability and productivity 
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Exascale: Who Needs It? 

Fusion: Simulations 
of plasma properties 
to ITER scale model 

Combustion: 
complete predictive 
engine simulation 

Astronomy: origins 
of the universe 

Sequestration: 
Understanding fluid 
flow & chemistry 

Materials: solar panels 
to database of 
materials-by-design. 

Climate: Resolve 
clouds (1km scale) & 
model mitigations 

Protein structures: 
From Biofuels to 
Alzheimers 

Every field needs more computing! 

1) To quantify and reduce uncertainty in simulation 
and to analyze the data sets from experimental 
devices (increase number of simulations) 

2) Analyze data from experiments and simulations 



Computing Growth is Not Just 
an HPC Problem 
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The Expectation Gap 

Microprocessor Performance “Expectation Gap” over Time 
(1985-2020 projected) 



Expectation Leads to 
Exascale: NERSC Roadmap 
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2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Franklin (N5) 
19 TF Sustained 
101 TF Peak 

Franklin (N5) +QC 
36 TF Sustained 
352 TF Peak 

Hopper (N6) 
120 TF Sustained, 1.29 PF Peak 

N7 ~3-5 PF in OSF 

N8  50 PF 

N10 
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NERSC performance has traditionally grown at 10x every 3-4 years 

N9  250 PF 



Life Cycle Economics 
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Assumes $1M purchase 
cost year 0; 5% interest; 
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KWhr 

Initial purchase lines show 
annual payments for 
system, maintenance 
and power 

Replacement cost lines 
show first year cost of 
equivalent SSP 

Cases shown for 3-, 4- and 
5-year leases 

Analysis by  
Jeff Broughton, NERSC 



Exascale for Thousands of 
Users 
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Old-HPC   Cluster   New-HPC 

•  Minimum cost per core (or app flop) are: 
–  Newest machines with largest core count per node (power) 
–  Largest machine: amortize personnel costs 

•  But commercial clouds are slower & more expensive 
–  Price not dropping with Moore’s Law (18% in 5 years) 
–  6-7x cost to buy NERSC compute + storage in 2011 cloud 
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The Exascale Challenge 

Energy Efficiency 
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Energy Cost Challenge for 
Computing Facilities 

At ~$1M per MW, energy costs are substantial 
•  1 petaflop in 2010 will use 3 MW 
•  1 exaflop in 2018 possible in 200 MW with “usual” scaling 
•  1 exaflop in 2018 at 20 MW is DOE target 

goal 

usual 
scaling 

2005                                      2010                                     2015                                      2020 
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PUE of Data Centers 
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New  
Design 

PUE = overhead 
   facility power  .     
computer power 

Current 
Facility 

But is this what we 
want to measure? 



Measuring Efficiency 
•  For Scientific Computing 

centers, the metric should be 
science output per Watt, if 
only we could measure that 

•  If we measure productivity 
by publications… 

•  NERSC in 2010 ran at 450 
publications per MW-year 

•  Next best: application 
performance per Watt 



Reducing power is about 
architecture & process technology 

•  Memory (2x-5x) 
–  New memory interfaces (optimized memory control and xfer) 
–  Extend DRAM with non-volatile memory 

•  Processor (10x-20x) 
–  Reducing data movement (functional reorganization, > 20x) 
–  Domain/Core power gating and aggressive voltage scaling 

•  Interconnect (2x-5x) 
–  More interconnect on package 
–  Replace long haul copper with integrated optics 

•  Data Center Energy Efficiencies (10%-20%) 
–  Higher operating temperature tolerance 
–  480V to the rack and free air/water cooling efficiencies 

Slide source: Mark Seager (LLNL) 



Anticipating and Influencing 
the Future 

Hardware Design 
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Potential Exascale System 
Architecture Targets 

System 
attributes 

2010 “2015” “2018” 

System peak 2 Peta 200 Petaflop/sec 1 Exaflop/sec 

Power 6 MW 15 MW 20 MW 

System memory 0.3 PB 5 PB 32-64 PB 

Node performance 125 GF 0.5 TF 7 TF 1 TF 10 TF 

Node memory BW 25 GB/s 0.1 TB/sec 1 TB/sec 0.4 TB/sec 4 TB/sec 

Node concurrency 12 O(100) O(1,000) O(1,000) O(10,000) 

System size 
(nodes) 

18,700 50,000 5,000 1,000,000 100,000 

Total Node 
Interconnect BW 

1.5 GB/s 20 GB/sec 200 GB/sec 

MTTI days O(1day) O(1 day) 

2 “swimlanes”: fast cores (>2 GHz) and slow cores (<.5 GHz) eliminated 



New Processor Designs are 
Needed to Save Energy 

•  Server processors have been designed for 
performance, not energy 
– Graphics processors are 10-100x more efficient 
– Embedded processors are 100-1000x 
– Need manycore chips with thousands of cores 
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Cell phone processor 
(0.1 Watt, 4 Gflop/s) 

Server processor  
(100 Watts, 50 Gflop/s) 
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The Amdahl Case for 
Heterogeneity 
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Size	  of	  Fat	  core	  in	  Thin	  Core	  units	  

F=0.999	  

F=0.99	  

F=0.975	  

F=0.9	  
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(256 cores) 
(193 cores) 

(1 core) 

F is fraction of time in parallel; 1-F is serial 

Chip with area for 256 thin cores  

A Chip with up to 256 “thin” cores and “fat” core that 
uses some of the some of the thin core area 

256 small cores 1 fat core 

Assumes 
speedup for 
Fat / Thin = 
Sqrt of Area 
advantage 

Heterogeneity Analysis by: Mark Hill, U. Wisc 



Energy Efficiency of 
Applications 

Gainestown 
Barcelona 
Victoria Falls 

Cell Blade 
GTX280 

Cache-based 

GTX280-Host 

Local store-based 

K. Datta, M. Murphy,  
V. Volkov, S. Williams ,  
 J. Carter, L. Oliker. 
 D. Patterson, J. Shalf, 
 K. Yelick, BDK11 book 

P
ow

er
 E

ffi
ci

en
cy

 

P
er

fo
rm

an
ce

 



Value of Local Store Memory 

•  Unit stride access is as important as cache utilization on 
processors that rely on hardware prefetch 
–  Tiling in unit stride direction is counter-productive: improves reuse, but 

kills prefetch effectiveness 
•  Software controlled memory gives programmers more control 

–  Spend bandwidth on what you use; bulk moves (DMA) hide latency 

Joint work with Shoaib Kamil, Lenny Oliker, John 
Shalf, Kaushik Datta	




Understanding Node 
Performance: Roofline Model 
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  The flat room is 

determined by 
arithmetic peak and 
instruction mix 

  The sloped part of the 
roof is determined by 
peak DRAM bandwidth 
(STREAM) 

  X-axis is the 
computational intensity 
of your computation 

See Sam Williams 
PhD Thesis & papers 
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What Heterogeneity Means 
to Me 

•  Case for heterogeneity 
–  Many small cores are needed for energy efficiency and 

power density; could have their own PC or use a wide SIMD 
–  Need one fat core (at least) for running the OS 

•  Local store, explicitly managed memory hierarchy 
–  More efficient (get only what you need) and simpler to 

implement in hardware 
•  Co-Processor interface between CPU and 

Accelerator 
–  Market: GPUs are separate chips for specific domains 
–  Control: Why are the minority CPUs in charge?   
–  Communication: The bus is a significant bottleneck. 
–  Do we really have to do this? Isn’t parallel programming 

hard enough 



Co-Design Hardware & 
Software 

•  Green Flash Demo 
•  CSU atmospheric model ported to 

low-power core design 
–  Dual Core Tensilica processors running 

atmospheric model at 25MHz 
–  MPI Routines ported to custom Tensilica 

Interconnect 
•  Memory and processor Stats 

available for performance analysis 
•  Emulation performance advantage 

–  250x Speedup over merely function 
software simulator 

•  Actual code running - not 
representative benchmark 

Icosahedral mesh for 
algorithm scaling 



CoDEx: Co-Design for 
Exascale 

Co-design for science applications (kernels or full) 
•  “GreenWave” example 

– Core (XTensa in-order core) 
– Cache hierarchy 
– Network On Chip (NoC) 
– Interconnect 

24 

Seismic Time Migration algorithm (RTM) shown 

Design hardware to match science needs and 
algorithms to match hardware 

7 Co-Design Centers identified in  DOE program 

PI: John Shalf, LBNL 

Hardware 

Applications & Models  

Algorithms  
Software 



RAMP: Enabling Manycore  
Architecture Research 
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Chisel Design Description 

C++ code FPGA Verilog ASIC Verilog 

C++ Simulator 

C++ Compiler 

Chisel Compiler 

FPGA 
Emulation 

FPGA Tools 

GDS Layout 

ASIC Tools 

•  ISIS: rapid, accurate FPGA emulation of manycore chips 
•  Spans VLSI design and simulation and includes chip fab 

–  Trains students in real design trade-offs, power and area costs 
•  Mapping RTL to FPGAs for algorithm/software co-design 

–  100x faster than software simulators and more accurate 

ISIS Hardware description language based on Scala, 
modern OO/Functional language that compiles to JVM. !

ISIS builds on Berkeley RAMP project. Ramp 
Gold shown here which models 64 cores of 
SPARC v8 with shared memory on $750 
board.  Has hardware FPU, MMU; boots OS. 

PIs: John Wawrzynek and Krste Asanovic, UC Berkeley 



The Future of Software Design 
and  

Programming Models 

•  Memory model 
•  Control model 
•  Resilience 
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Memory is Not Keeping 
Pace 

Technology trends against a constant or increasing memory per core 
•  Memory density is doubling every three years; processor logic is every two 
•  Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs 

Source: David Turek, IBM 

Cost of Computation vs. Memory 

27 

Question: Can you double concurrency without doubling memory? 

Source: IBM 
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What’s Wrong with Flat 
MPI? 

•  We can run 1 MPI process per core 
–  This works now for Quad-Core on Franklin 

•  How long will it continue working? (circa 2008) 
–  4 - 8 cores? Probably.  128 - 1024 cores? Probably not. 

•  What is the problem? 
–  Latency: some copying required by semantics 
– Memory utilization: partitioning data for separate address 

space requires some replication 
•  How big is your per core subgrid?  At 10x10x10, over 1/2 of the 

points are surface points, probably replicated 
– Memory bandwidth: extra state means extra bandwidth 
– Weak scaling will not save us -- not enough memory per core 

•  This means a “new” model for most NERSC users 

28 
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Develop Best Practices in 
Multicore Programming 

Hybrid Programming is key to saving memory 
(2011) and sometimes improves performance 
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Why Use 2 Programming 
Models When 1 Will Do? 

Global address space: thread may directly read/write 
remote data  

Partitioned: data is designated as local or global 

G
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x: 1 
y:  

l:  l:  l:  

g:  g:  g:  

x: 5 
y:  

x: 7 
y: 0 

p0" p1" pn"
•  Affinity control for shared and distributed memory 
•  No less scalable than message passing 
•  Permits sharing, unlike message passing 
•  One-sided communication: never say “receive”  



Avoiding Synchronization in 
Communication 

•  Two-sided message passing (e.g., MPI) requires 
matching a send with a receive to identify memory 
address to put data 
–  Wildly popular in HPC, but cumbersome in some applications 
–  Couples data transfer with synchronization 

•  Using global address space decouples synchronization 
–  Pay for what you need!   
–  Note: Global Addressing ≠ Cache Coherent Shared memory 

address 

message id 

data payload 

data payload 
one-sided put message 

two-sided message 

network 
 interface 

memory 

host 
CPU 

Joint work with Dan Bonachea, Paul Hargrove, 
Rajesh Nishtala and rest of UPC group	




32 

Avoid Synchronization 
from Applications 

Computations as DAGs 
View parallel executions as the directed acyclic graph of the 
computation  

Slide source: Jack Dongarra	




Event Driven Execution of LU 

•  Ordering needs to be imposed on the schedule 
•  Critical operation: Panel Factorization 

–  need to satisfy its dependencies first 
–  perform trailing matrix updates with low block numbers first 
–  “memory constrained” lookahead 

•  General issue: dynamic scheduling in partitioned memory 
–  Can deadlock memory allocator! 

some edges omitted 



34 

        DAG Scheduling Outperforms 
Bulk-Synchronous Style 

UPC LU factorization code adds cooperative (non-
preemptive) threads for latency hiding 
–  New problem in partitioned memory: allocator deadlock 
–  Can run on of memory locally due tounlucky execution order 

PLASMA on shared memory UPC on partitioned memory 

PLASMA by Dongarra et al; UPC LU joint with 
Parray Husbands	




To Virtualize or Not 

•  The fundamental question facing in parallel 
programming models is: 

             What should be virtualized? 
•  Hardware has finite resources 

–  Processor count is finite 
–  Registers count is finite 
–  Fast local memory (cache and DRAM) size is finite 
–  Links in network topology are generally < n2 

•  Does the programming model (language+libraries) 
expose this or hide it? 
–  E.g., one thread per core, or many? 

•  Many threads may have advantages for load balancing, fault 
tolerance and latency-hiding 

•  But one thread is better for deep memory hierarchies 

•  How to get the most out of your machine? 



Reasons to Virtualize 

•  Simplicity for Programmer 
•  Potential to hide problems: 

–  load imbalance in hardware, e.g., jitter 
–  faults  
– wierd memory structures (local stores) 

•  Effective use of system resources 
–  in a space-shared environment 
– multiple jobs sharing resources 



Virtualization of 
Processors 
•  A parallel computation is 

defined by its task graph 
•  Many possible graphs, 

depending on how much 
parallelism is exposed 

•  Where does the mapping of the 
graph to a particular number of 
processors happen? 
–  The compiler: auto parallelization, 

NESL, ZPL 
–  The runtime system : Cilk, Charm

++ (sometimes), OpenMP, X10 
–  The programmer: MPI, UPC 



Irregular vs. Regular 
Parallelism 

•  Computations with known task graphs can be 
mapped to resources in an offline manner (before 
computation starts) 
–  Regular graph: By a compiler (static) or runtime (semi-static) 
–  Irregular graphs: By a DAG scheduler 

–  No need for online scheduling 
•  If graphs are not known ahead of time (structure, 

task costs, communication costs), then dynamic 
scheduling is needed 
–  Task stealing / task sharing 
–  Demonstrated on shared memory 

•  Conclusion: If your task graph is dynamic, the 
runtime needs to be, but what if it static?   



Load Balancing with Locality 

•  Locality is important: 
–  When memory hierarchies are deep 
–  When computational intensity is low (expensive move cost cannot be 

amortized) 
•  Most (all?) successful examples of locality-important applications/

machines use static scheduling 
–  Unless they have a irregular/dynamic task graph so it is impossible 

•  Two extremes are well-studied 
–  Dynamic parallelism without locality 
–  Static parallelism (with threads = processors) with locality 

•  Dynamic scheduling (task stealing) with locality control can cause 
problems 
–  Locality control can cause non-optimal task schedule, which can blow 

up memory use (breadth vs. depth first traversal) 
–  Can run out of memory locally when you don’t globally 



Efficiency Programming 
Model: Phalanx 

•  Invoke functions on set of cores and set of memories 
•  Hierarchy of memories 

–  Can query to get (some) aspects of the hierarchical structures 
•  Functionally homogeneous cores (on Echelon) 

–  Can query to get (performance) properties of cores 
•  Hierarchy of thread blocks 

–  May be aligned with hardware based on queries 

Memory 

Memory 

Memory 

Proc Mem Proc Mem 
• • • 

Proc Mem Proc Mem 
• • • 

Echelon ProgSys Team: Michael Garland, Alex Aiken, Brad 
Chamberlain, Mary Hall, Greg Titus, Kathy Yelick 



Autotuning: Write Code 
Generators 

•  Autotuners are code generators plus search 
algorithms to find best code 

•  Avoids compiler problems of dependence analysis 
and approximate performance models 

  Functional portability 
from C 

  Performance portability 
from search at install time 

Matrix 
Vector Mul 
specialized 

to n,m 

Triangular 
Solve 

specialized 
to n,m 

Matrix 
Multiply 

specialized 
to n,m 

BLAS = Basic Linear Algebra Subroutine: matrix multiply, etc. 

BLAS 
Library 

Atlas 
Autotuner: 
code generator 
+search 

Performance of Autotuned Matrix Multiply 
HP 712 / 80i 



Recent Past Autotuners: 
Sparse Matrices 

•  OSKI: Optimized Sparse Kernel Interface 
•  Optimized for: size, machine, and matrix structure 
•  Functional portability from C (except for Cell/GPUs) 
  Performance portability 

from install time search and 
model evaluation at runtime 

  Later tuning, less opaque 
interface 

Matrix 
Vector Mul 
specialized 

to n,m 

Triangular 
Solve 

specialized 
to n,m 

Matrix 
Vector Mul 
specialized 

to n,m, 
structure 

See theses from Im, Vuduc, Williams, and Jain  

OSKI 
Library 

OSKI 
Autotuner: 
code generator 
+search 

Performance on Median Matrix of Suite 



Future: Improving Support for 
Writing Autotuners!

•  Ruby class 
encapsulates SG 
pattern!
–  body of anonymous 

lambda specifies filter 
function!

•  Code generator 
produces OpenMP !
–   ~1000-2000x faster than 

Ruby!
–  Minimal per-call runtime 

overhead!

class LaplacianKernel < Kernel 
 def kernel(in_grid, out_grid) 
  in_grid.each_interior do |point| 
   in_grid.neighbors(point,1).each  
      do |x| 
     out_grid[point] += 0.2*x.val 
   end 
 end 
end 

VALUE kern_par(int argc, VALUE* argv, VALUE 
self) { 
unpack_arrays into in_grid and out_grid; 

#pragma omp parallel for default(shared)  
private (t_6,t_7,t_8) 
for (t_8=1; t_8<256-1; t_8++) { 
 for (t_7=1; t_7<256-1; t_7++) { 
  for (t_6=1; t_6<256-1; t_6++) { 
   int center = INDEX(t_6,t_7,t_8); 
   out_grid[center] = (out_grid[center] 
      +(0.2*in_grid[INDEX(t_6-1,t_7,t_8)])); 
   ... 
   out_grid[center] = (out_grid[center] 
      +(0.2*in_grid[INDEX(t_6,t_7,t_8+1)])); 
;}}} 
return Qtrue;} 

Joint with Shoaib Kamil, 
Armando Fox, John Shalf. 



Resilience at Exascale 

•  More analysis needed on what faults 
are most likely and their impact 
– Node / component failures, O(1 day) 

•  Kills a job, hopefully not a system 
– System wide outages, O(1 month) 

•  Kills all jobs, O(hours) to restart 
•  Weakest links: network, file system 

•  How much to virtualize? 
– Detection of errors visible on demand 
– Automatic recovery: maybe 

44 



Errors Can Turn into 
Performance Problems 

•  Fault resilience introduces inhomogeneity in 
execution rates (error correction is not instantaneous) 

Slide source: John Shalf	




Algorithms to Optimize for 
Communication 

46 46 



Where does the Power Go? 
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Choose Scalable 
Algorithms 

• Algorithmic gains in last decade have                                                             
far outstripped Moore’s Law 

– Adaptive meshes 
    rather than uniform 
– Sparse matrices  
   rather than dense 
– Reformulation of  
  problem back to basics 

• Two kinds of scalability 
– In problem side (n) 
– In machine size (p) 

• Example of canonical “Poisson” problem on n points: 
– Dense LU: most general, but O(n3) flops on O(n2) data 
– Multigrid: fastest/smallest, O(n) flops on O(n) data 

Performance results: John Bell et al	




Communication-Avoiding 
Algorithms 

•  Sparse Iterative (Krylov Subpace) Methods 
–  Nearest neighbor communication on a mesh 
–  Dominated by time to read matrix (edges) from DRAM 
–  And (small) communication and global 

synchronization events at each step 
•  Can we lower data movement costs? 

–  Take k steps with one matrix read from 
DRAM and one communication phase 

•  Serial: O(1) moves of data  moves vs. O(k) 
•  Parallel: O(log p) messages vs.  O(k log p)  

•  Can we make communication provably optimal? 
–  Communication both to DRAM and between cores 
–  Minimize independent accesses (‘latency’) 
–  Minimize data volume (‘bandwidth’) 

Joint work with Jim 
Demmel, Mark 
Hoemman, Marghoob 
Mohiyuddin 



Bigger Kernel (Akx) Runs at Faster 
Speed than Simpler (Ax)    

Speedups on Intel Clovertown (8 core) 

Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick  



“Monomial”	  basis	  [Ax,…,Akx]	  	  	  
fails	  to	  converge	  

	  A	  different	  polynomial	  basis	  does	  converge	  



Communication-Avoiding  
Krylov Method (GMRES) 

Performance on 8 core Clovertown 



Communication-Avoiding 
Dense Linear Algebra 

•  Well known why BLAS3 beats BLAS1/2: Minimizes 
communication = data movement 
–  Attains lower bound Ω (n3 / cache_size1/2 ) words moved in 

sequential case; parallel case analogous 
•  Same lower bound applies to all linear algebra 

–  BLAS, LU, Cholesky, QR, eig, svd, compositions…  
–  Sequential or parallel 
–  Dense or sparse (n3 ⇒ #flops in lower bound) 

•  Conventional algs (Sca/LAPACK) do much more 
•  We have new algorithms that meet lower bounds 

–  Good speed ups in prototypes (including on cloud) 
–  Lots more algorithms, implementations to develop 

53 

Research by Demmel, Anderson, Ballard, Carson, Dumitriu, Grigori, Hoemmen, 
Holtz, Keutzer, Knight, Langou, Mohiyuddin, Schwartz, Solomonik, Williams, 
Xiang,Yelick 



Challenges to Exascale 

1)  System power is the primary constraint 
2)  Concurrency (1000x today) 
3)  Memory bandwidth and capacity are not keeping pace 
4)  Processor architecture is open, but likely heterogeneous 
5)  Programming model heroic compilers will not hide this 
6)  Algorithms need to minimize data movement, not flops 
7)  I/O bandwidth unlikely to keep pace with machine speed  
8)  Reliability and resiliency will be critical at this scale 
9)  Bisection bandwidth limited by cost and energy 

Unlike the last 20 years most of these (1-7) are equally 
important across scales, e.g., 1000 1-PF machines 

Performance Growth 



General Lessons 

•  Early intervention with hardware designs 
•  Optimize for what is important:  
           energy  data movement  
•  Anticipating and changing the future 

–  Influence hardware designs 
–  Use languages that reflect abstract machine 
–  Write code generators / autotuners  
–  Redesign algorithms to avoid communication 

•  These problems are essential for computing 
performance in general 
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Thank You! 
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